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ROBOT DESIGN 
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DRIVE TRAIN 

 
 The swerve drive train allows us to move quickly and precisely across the field 
omnidirectionally. To prevent tipping, the frame height was dropped 1”, and an 1/8" aluminum 
belly pan was added to provide a lower CG.  

● Built with 2x1x0.125” aluminum tubing with a regular hole pattern, allowing for easy 
mechanism mounting.  

● 26.5x26.5” frame 

● MK4i-L3 modules (16.5ft/s) with black neoprene tread 

● Powered by 4 FOC (Field Oriented Control) Kraken X60’s. 

● Steel ballast and battery placed opposite to the Elevator to center CG for climb. 
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BUMPERS 

                    Image 1                                                                           Image 2 

 

 

 

  

 

              Image 3                                                                           Image 4 

With the bumper changes this year, our bumper design changed away from pool 
noodles. The bumpers this year used foam tiles with a metal backing. Testing many types of 
foam and stacking methods were used to find and decide this solution.  

● EVA floor tiles, bought from AndyMark as FIRST Tech Challenge Field Soft Tiles (Image 4) 

● Laser cut foam tiles horizontally stacked and glued 5” tall and a minimum of 3” thick 
(Image 4) 

● Bent metal backing to ensure consistent structure along our whole frame (Image 3) 

● Heat pressed team number on cordura fabric (Image 2) 

● Attached to the chassis with 5/16-18 threaded studs on the bumper that fasten with 
wingnuts clamping on a plate. 
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ELEVATOR 

 
The elevator is a two-stage continuous design enabling the 

ability to score both on L4 and Algae in the Net, and contains the 
arm pivot as its carriage. It is designed to be lightweight and have 
fast deployment and retraction to minimize cycle times. 

● Driven by 2 Kraken x60’s with 9:44 gear ratio on a 1.5” 
aluminum drum 

● Uses 3/16” Dyneema Rope 

● Max vertical travel of 60.5” 

● 1”x2”x1/16” tubing used for upright, saving weight 

● 20mm Carbon tie rods to 
increase stability 

● LED light tubes to 
communicate with the 
driver 

● Constant force spring to 
force carriage to deploy 
first 

● E-Chain and rigging 
protected by sponsor panel 
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PIVOT/CARRIAGE 

The pivot, residing in the carriage of the elevator, allows us to be symmetrical in function 
and abilities. Wires feed through the hollow pivot tube, giving way for a safe 270° of motion 
without putting the wires under much stress. 3/8" weight-saved aluminum was used as the side 
walls and bearing blocks of the carriage to increase the available room and save weight. 
 

● Single Kraken x60 on an 18.3:1 gear reduction and 5:1 chain reduction using #35 chain 

● Gearbox slides relative to the carriage by two 10-32 bolts to tension the chain 

● CANcoder geared off of the main pivot to provide position 

● 1.5”x0.08” steel tube with an OD lathed to 38mm to provide a clean contact to IGUS 
bushings that saved weight and complexity to traditional bearings 
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TWIST 

 
 

The twist is a mechanism that rotates the intake around a carbon fiber tube in the 
center. It ensures a seamless and easy transition between intake and placement on either side 
of the robot with no pass-off. 
 

● 31.5:1 ratio powered by 1 Kraken x60 for high-speed rotation with adequate torque 

● Custom-machined 10mm hardened steel shaft for extreme force transfers 

● Uses a custom-machined pillow block to encase 30mm OD angular contact bearings 

● 180° degrees of mobility for continuous motion with no interrupts  
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INTAKE 

The Intake is designed to be able to pick coral off of the ground and the feeder and score 

on any reef level on both sides of our robot. Additional 18mm carbon fiber forks layered with 

silicon allow for the control of Algae on the reef and ground and subsequently place it into the 

Net or Processor. 

● 3D printed clamps to 36mm OD carbon rod, allowing for easy replacement 

● Single 4” 35A compliant wheel for manipulation of game elements 

● Belt hidden within polycarbonate plates for protection 

● Driven by a Kraken x60 with a 12:42 belt reduction 
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CLIMBER 

 

The climber allows the robot to deep climb ~4” off the ground within 3 seconds of 

acquisition of the Cage without a large weight and size footprint. Passive spring hooks grab onto 

one bar of the Cage, keeping it simple yet effective at various angles. 

● A 200N gas spring deploys the climber 

● Bottom forks sticking out of frame are held static with a locking mechanism and hold 
bottom of the cage, holding the chain above CG 

● Large polycarbonate forks guide the Cage to the spring hooks 

● Kraken x60 with a 90:1 worm gear reduction drives a 1” drum to winch down  
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MACHINING  

To achieve our ambitious design for our robot, many complex and unique parts of our 

mechanisms emerged, demanding high precision and tight tolerances. With high-quality parts 

machined in-house, we could fabricate a robot that accomplishes our goals. The process starts 

with designing the parts and then creating the sequences that are later run on the CNC 

machines.  

  

Pillow Block 

 

Machined to retain steel shaft with minimal wiggle room, preventing backlash in the system 

 

Custom Steel Hub Interface 

 

● Originally 2 separate parts, switched to one single steel hub integrating spacer to 

improve strength 

● Made initially on a CNC mill and later finished on the manual lathe 

● Hardened and tempered post-machining 
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Constant Force Spring Holder 

 

● Originally 3d printed, but switched to aluminum to improve durability 

● Machined on a Tree Journeyman 310, a CNC mill 

● Clamping the part proved to be very difficult yet vital to the overall quality, leading to 

multiple attempts and orientations to machine this part successfully 

 

Pulley Holder 

 

● Machined on a Tree Journeyman 310, a CNC mill 

● Starts with billet aluminum that is processed through multiple sequences 

● A similar process to the previous Constant Force Spring Holder  
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ELECTRICAL 

 

Going into 2025, we had a few main electrical goals that we wanted to keep as guiding 

principles through the season. We realized throughout the 2024 offseason that our lack of a 

detailed battery regiment was restricting us from competing at our fullest capacity, the amount 

of degrees of freedom we wanted on our robot this year would require very detailed wiring, and 

our programming teams switch from Limelights to photon vision would require a new way of 

communication and power for that subsystem. The way we wired the chassis, elevator, cameras, 

strain relieved our wires, and managed our batteries were all derived from these goals. 

 

ELEVATOR 
 From the start of the season, we immediately knew that our elevator and arm would 

hold many degrees of freedom, requiring multiple motors and encoders on moving elements. 

We wanted to minimize the volume of wires to ensure there was space for all necessary power 

and CAN and to save weight at the top of the elevator. Because of our electronics, weight, and 

space requirements, we came up with the following solution: 

● A polycarbonate plate on the back of the elevator acts as an e-chain with wires zip-tied 

to it. 

- We reasoned this would give us a tighter bend radius, necessitating less space 

behind the elevator for wires. 

 

● Run CAN up the elevator through an ethernet cable. 

- As ethernet is a group of wires inside another insulation, we thought this would 

give us convenient packaging for our CAN and the wires for any sensors we 

wanted to implement on the elevator or arm. 

● Use the minimum possible wire gauges and breaker amperes to ensure adequate torque 

to all our motors. 

- We theorized this would be the best way to save weight up the elevator, as we’d 

previously run 10-gauge wires to all motors when some didn’t require the torque 

allowed by such a low wire gauge. 

Additionally, we knew that routing wires to our twist would be a struggle, as it rotated through 

such a range of motion that any wires would undergo significant stretching or bunching based 

on our current arm positioning. To solve this, we came up with the following idea: 

● We would route all wires under the elevator carriage and then direct them under our 

pivot sprocket, where they could be attached to the center of the pivot’s rotation. This 
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would allow us to fasten the wires there, minimizing the deformation of our wires to the 

intake, as they would be attached to the center of rotation so as to not undergo any 

significant length changes. 

 

Our practice robot suffered significant electrical failures due to some of these choices, 

specifically: 

● The polycarbonate E-chain was prone to fatigue and eventual snapping due to prolonged 

bending in our preset positions.  

● Our CAN connectors frequently failed to hold on the internal ethernet wire, as the 26 

AWG wire was much too high for our crimps to get a strong hold on. 

●  The wires under the elevator would often become loose, running the risk of being 

crushed by the carriage after becoming unstuck due to high velocities.  

 

Because of these failures, when wiring our comp bot, we came to the following decisions: 

● We switched back to the normal E-chain to ensure protection of the wires from all sides 

and to provide more structure and strength, supporting our wires through the E-chain 

motion. 

● We returned to standard 22 AWG CAN wire. We decided not to use any sensors atop the 

elevator, which made all advantages of using ethernet obsolete as it took up too much 

room to warrant only supporting connection for one device. 

● We hollowed out the rotating axle of the pivot and pillow block; wires could be run 

directly through the center of rotation of the pivot. This way, our wires would maintain 

the advantages of being anchored at the center of rotation (minimal deformation), and 

they would now be internal to the robot, providing them more protection and a more 

reliable path of movement. 

Because of this iteration process on our first elevator of the season, we have been able to 

eliminate nearly all electrical issues throughout the incorporated subsystems and have come to 

a product with clean, reliable wiring. 

 

 

ORANGE PI 

 After transitioning from Limelight to photon vision, our biggest challenge was ensuring 

adequate power supply for the Orange Pis. 

● Connectors for power  

- We started with Dupont connectors but quickly transitioned away due to their 

fragility and loose connections.  
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- We changed to USB-C cables with power poles on the ends, which gave us a 

more durable and secure connection.  

● VRM power 

- Initially, the Orange Pis were powered by the VRM, receiving 5V and 2A.  

- Our consistent loss of power led us to do more digging, ultimately revealing that 

the Pis were not receiving adequate power.  

● Buck converter power 

- Our quick fix for this problem was using a buck converter. Powering the Orange 

Pis off a bus bar (terminal bar), which was powered by the buck converter, didn’t 

solve our problems. 

- As the battery dropped below 12V, the buck converter was no longer able to 

supply enough power, causing us to lose our vision.  

● PDH power 

- Our last resort was to power the Pis directly off the PDH. 

- This worked temporarily while we waited for the Pololus to arrive.  

● Pololu power 

- The ultimate solution was purchasing Pololu voltage regulators. With 5V and 3A, 

this tiny buck-boost provided us with consistent power for the Orange Pis.  

- After CADing and 3D printing a case for the Pololus, we integrated these onto our 

robots, ensuring sufficient power supply for our vision system.  

 

 
 
 

CANCODER 
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 Going into our season, we planned to incorporate a CTRE cancoder for our twist; 

however, problems quickly arose the more we ran our elevator.  

● Hardware damage 

- Our biggest problem was our own elevator constantly hitting the cancoder and 

its mount, resulting in many broken cases and mounts. 

- This caused external hardware damage; some of our cancoders were missing 

components that we presume to have fallen after critical hits.  

● Mount 

- We started with a 3D print to mount to the back of the elevator. We went 

through many iterations of mounting techniques, as the 3D print restricted the 

cancoder from reading accurate values since the magnet was blocked by the 

print. 

● Wiring and soldering 

- The strong elevator was not a match for the weak solder joints.  

- After wires had been ripped out time after time, we decided to focus on higher 

attention to detail whilst soldering and more efficient strain-relieving techniques.  

● New location  

- After many failed iterations, we decided to locate the cancoder on the inside of 

the carriage to eliminate hardware damage.  

- With this new location, we were also able to get Kraken PowerPole adapter 

boards on our motors. This gave us a direct way to receive power and a signal for 

our power and better strain relieving.  

 

 

BATTERY 

 During the offseason, we encountered a recurring power issue that traced back to our 

batteries. Initially, we suspected the problem stemmed from old, worn-out batteries. However, 

even after purchasing multiple new ones for an off-season tournament, the issue persisted. 

Ultimately, we realized that poor battery maintenance at home had cost us, leaving us with 

mediocre batteries during competitions and limiting our performance. The robot draws a 

significant amount of power, forcing us to purchase new batteries.  

● We changed the protocols for battery usage at home to avoid failures.  

- We reserved 10 batteries to be used only at tournaments, the rest were allocated 

for testing purposes. This can increase the longevity of our batteries with higher 

quality, increasing our performance at competitions.  

● Battery testing 
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- Through battery testing, we track each battery’s quality in an organized 

spreadsheet, making it easy to determine whether a battery is suitable for 

competition, testing, or recycling. 

- When looking at each battery’s test, we focus on their test amp hour. Our 

threshold for a competition battery is 14aH, while an at-home battery ranges 

from 10aH to 12aH. Anything below 10aH is put aside to be recycled later.  

● Battery leads are created with higher attention to detail to increase longevity 

- This includes proper crimping, torquing the leads to spec on the battery, and 

sufficient use of heat shrink and electrical tape to avoid exposed connectors and 

lugs.  

 

LED LIGHTS 

 Our lights play a vital role in providing driver feedback. With two tie rods and swerve 

lights, visibility from the opposite side of the field is essential. To achieve this, each tie rod is 

equipped with its own CTRE CANdle, along with a separate CANdle dedicated to the swerve 

lights. 

● Light Tie Rods 

- The light strip is hot glued, spiralling down a wooden rod.  

- The light sticks are put in tubes with vinyl light diffusers.  

● Swerve lights 

- With clear 3D printed strips on our swerve covers to make lights more visible, the 

light strip is constrained within the cover.  

- Wires for lights are run through chassis tubes.  

● To have quality feedback, we have set easy-to-understand and memorable light codes. 

- Disabled: Red or blue lights bounce up and down the tie rods or circle through 

the swerves based on our alliance color.  

- Teleop: 

➢ The back tie rods will be either white or green, based on coral or algae 

mode.  

➢ The front tie rods will be either purple for auto mode or alliance color for 

manual mode.  

- Placement sequences: Lights will flash purple for intaking, yellow for lining up, or 

green for scoring.  
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PROGRAMMING 

STRATEGY 

Through early game analysis, it became apparent that fast coral cycle times were going 

to be crucial in the Reefscape game. The main ways to enable fast cycles are auto-feeding, 

auto-placement, and other driver assists, all of which were implemented this year.  

CONTROLS 

To cut down on inefficiency with multiple drivers, fitting all controls onto one controller 

was essential. Because buttons are needed for many different placement heights and directions, 

the controls were broken down into 2 modes: coral and algae. To reduce the amount of thinking 

the driver must do during the match, the robot automatically selects which side to feed coral, 

place coral, remove algae, place net algae, and place processor algae on. The robot also 

automatically chooses which height the algae to be removed is. A full controller layout is shown 

below.  
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AUTONOMOUS PROCEDURES 

The goal during autonomous was to be able to configure only one auto but flip them in 3 

directions so they could run on both the red and blue on both the processor and net sides. This 

would allow the robot to easily synergize with other robots that have autos that are more 

constrained. Another goal was to be able to consistently hit  

● 3-piece coral auto that scores preload and two more from the feeder station. 1 is placed 

L1 and the others L4. Runs on both processor and non-processor sides. 

● 3-piece coral auto that scores the preload and two more from the feeder station on L4 

branches. Runs on both processor and non-processor sides. 

LOCALIZATION 

Camera localization was implemented to enhance robot control and field positioning 

using Orange Pis and Arducams. It allows the robot to automatically line up and place on any 

reef branch with an accuracy of less than 0.8 inches. This system works when the cameras view 

April tags around the field. Using its position and the corners of the tag in the frame, the robot 

can calculate where it is on the field. Localization also helps with autonomous pathing and 

optimizations to ensure the robot is in the right spot. It utilizes a Kalman filter with other basic 

filtering to reduce noise. The graph below shows a tuned quartic regression with different 

standard deviation values to change the vision measurement trust rating at different distances 

from tags. This figure of merit adjusts when more tags are being tracked, further increasing the 

accuracy of the pose estimation. A camera stick enabled the robot to see reef and feeder tags 

from both sides. This was done by setting up a high-angle and a low-angle camera facing either 

side of the robot. 
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State-Machining 

 

 A state machine architecture integrated with WPILIB subsystems and 

command-based programming allows the code to break down complex tasks into states for the 

robot itself and each subsystem. Each state then has a transition to move to a different state, 

allowing for the robot to easily complete any task. The below flowchart showcases how the 

codebase is organized.
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Auto Placement 

 

A pathing PID was used to drive the robot to the specified position for coral placements. 

The accuracy of the control loop was tested 33 times while recording the X, Y, and heading 

(shown as theta) of the robot once it was placed. The graph of this data and its Gaussian 

distribution were used to determine the degree of accuracy of the autonomous placement 

sequence. 
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The green star is the setpoint, and the 2 red Xs are the times the robot missed the 

placement. The blue dots are successful placements. A majority of the points lie within a 5 by 5 

centimeter square, which shows a high precision but a lower accuracy. The data is up and to the 

right of the setpoint, meaning the robot overshoots the setpoint. This result meant that a new 

PID tuning for the autonomous placement sequence was required. 
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Pathing Tool 
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Design Requirements 

The set of design requirements to be met with a new pathing tool were as follows: 

● Have a user-friendly UI/UX (intuitive controls/displays). 

● Control paths with key point position, velocity, and acceleration. 

● Upload and download autos to and from the robot. 

● Visual feedback in path creation. 

● Flexible layout to create room for updates. 

● Incorporation with state machine. 

● Different optimizations at different parts of the path. 

● Branching based on conditions. 

● Command management. 

● Configurable for multiple games/robots. 

To meet these requirements, the following solutions were incorporated:  

● Flutter was used to build a user-friendly UI/UX with customizable theming. 

● Use quintic Hermite splines to generate path equations. 

● Upload and download support directly from Roborio 

● Path animation, waypoint markers, path curves, and command curve highlighting. 

● Easily deployable with a single JSON file. 

● Easy code-side configuration 

● Multiple custom path-following algorithms to optimize for  

● Branching support based on robot configuration 

● Command support based on robot configuration 

● Configurable with robot and field config files  
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Labelled diagrams and Descriptions 

Path display 

 

  1 - Path Line  Shows what path the robot will follow. 

  2 - Robot Indicator  Shows where the edges of the robot should 

be at that key point.  

  3 - Robot Angle Indicator  Shows at what angle the robot should be 

facing at that key point.  

  4 - Selected Point Indicator  Indicates that that key point is currently 

selected.  

  5 - Linear Velocity Indicator  Indicates the magnitude and direction of the 

robot’s linear velocity at that key point.  
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Key point menu 

 

  1 - Reindex Point Button Switches the selected key point with the point 

before or after it, controlled with the buttons 

labeled “<” and “>”. This is useful for inserting 

key points into the middle of a path. 

  2 - Waypoint dropdown Dropdown list to select any key point and edit 

the specifics of it. 

  3 - X edit field Here the X value can be adjusted. 

  4 - Y edit field Here the Y value can be adjusted. 

  5 - Angle edit field Here the heading value can be adjusted. 
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Commands menu 

 

1 - Highlighted Path Indicates where on the path the 
command will run. 

2 - Command Start/End Time Allows users to edit where the 
command runs on the path. 

3 - Command Selector Allows users to select which 
command to run. 

4 - Delete Command Removes the command from the list 
of commands. 

5 - Add Command Adds a command to the list of 
commands. 
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Paths menu 

  

  1 - Path Selector Here users can select the path to use 

  2 - Path Editor Clicking this will allow users to open the 
editor on the current path 

  3 - Path Deleter Clicking this will allow users to delete the 
current path. 

  4 - Add Branched Path Adds a branched path to the paths list 

  5 - Add Path Adds a path to the paths list 

  6- Save Button Opens a window to choose where to save the 
auto file to 

  7 - Robot Save Button Saves the autonomous directly to the robot 

  8 - Redo and Undo Buttons Users can redo or undo any action using this 
button 

  9 - Play/Pause Button Clicking this will play or pause the animation 
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How to use 

The 2025 Path Tool is capable of creating, refining, debugging, and transferring 

autonomous path files. Here is a guide that will explain how best to take advantage of the 

features it has to offer, shown with an example path.  

Robot and Field configuration 

Users can add different robot configs and field configs.  The robot configs hold the robot 

dimensions and the commands for that robot.  The field configuration takes the image, the 

image dimensions, and the field dimensions in meters.   

 

 

 

 

 

 

 

 

  

Creating Paths 
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Creating Paths 

 

Left-click on the picture of the game field to create new key points. These key points are 

what define any given path.  

Editing Way-points 

 

Controls in the editor and waypoint menu can be used to select each key point and edit 

its parameters to the user’s liking. In the example above, each point is rotated, the timings are 

adjusted, and the whole path is optimized with the “Smoothen” button.  
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Make sure it looks right 

 

The animation can be run to check that the path was generated correctly at all points. 

Upload to RoboRIO 

 

The upload path button uploads the path to the RoboRio (which must be connected to 

the robot).  
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Code structure 

The structure of the pathing tool was written in a way to increase how intuitive each 

part of the pathing tool is. Each autonomous has a set of paths. Each of these paths can be 

edited on its pages. Each path has commands and waypoints. The overall app was given access 

to a set of global variables: the robot configuration, field image configuration, and preference 

configuration. These can dynamically change the information shown on each page, making for a 

simple UI. 

Path-generation 

The 2025 Path Tool uses quintic Hermite splines to interpolate between key points in a 

path. This has the benefit of smooth, continuous motion, which reduces robot error when 

following the path.  

Quintic Hermit Splines 

There are 3 separate piecewise position equations, which are for x, y, and heading, 

respectively. To generate these splines, equations formulated by Jan Hünermann were used. 

These involve multiplying a vector consisting of the waypoint data by a special matrix to get the 

coefficients to the quintic position function:  

 

The output of this matrix multiplication is the quintic function of position in the form: 

 In this function, t represents time in the path minus 𝑥 = 𝑐
0
+ 𝑐

1
𝑡 + 𝑐

2
𝑡2 + 𝑐

3
𝑡3 + 𝑐

4
𝑡4 + 𝑐

5
𝑡5.

the time of the first point1.  

1Jan Hünermann, “Quintic Hermite Splines,” February 12, 2020, https://janhuenermann.com/paper/spline2020.pdf. 
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Velocity and Acceleration Equations 

The velocity and acceleration of these functions can be easily found by taking the first 

and second derivatives of the position function above with respect to time: 

 𝑣 = 𝑐
1
+ 2𝑐

2
𝑡 + 3𝑐

3
𝑡2 + 4𝑐

4
𝑡3 + 5𝑐

5
𝑡4

 𝑎 = 2𝑐
2
+ 6𝑐

3
𝑡 + 12𝑐

4
𝑡2 + 20𝑐

5
𝑡3

 It is important to note that these functions return the position, velocity, and acceleration 

of only one dimension (x, y, or heading), not all of them. This means that to calculate 

magnitudes, the distance formula must be used with the x and y: 
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Code Implementation 

To implement these equations in code, the spline generator uses vector and matrix 

libraries in Dart to easily multiply the vectors and matrices. Using the calculated coefficients, 

position, velocity, and acceleration can be evaluated at different times:  

Matrix position = Matrix.fromList([ 

          List.generate(6, (int index) { 

            return pow(adjustedTime, index) as double; 

          }), 

        ]) * 

        segmentCoefficients[segmentIdx]; 

    Matrix velocity = Matrix.fromList([ 

          List.generate(6, (int index) { 

            return index == 0 

                ? 0 

                : index * pow(adjustedTime, index - 1) as double; 

          }), 

        ]) * 

        segmentCoefficients[segmentIdx]; 

    Matrix acceleration = Matrix.fromList([ 

          List.generate(6, (int index) { 

            return index <= 1 

                ? 0 

                : index * (index - 1) * pow(adjustedTime, index - 2) as double; 

          }), 

        ]) * 

        segmentCoefficients[segmentIdx]; 

 

 These vector dot products will result in a scalar with the desired value. To display these 

as continuous functions, points are chosen in 0.01-second intervals and graphed parametrically 

over the game field.  
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Optimization 

The linear and/or angular components of a path can optionally be converted into 

Catmull-Rom splines, which helps to smooth out corners by optimizing the velocities of key 

points interior to the path (key points that are not the first or last point). The math to calculate 

these velocities is fairly simple: just set the velocity of the key point equal to the average 

velocity based on the key points before and after it.  

  

  

In the example above, the x-velocity at key point B could be determined with the 

following equation:  
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Angle Optimization 

Because quintic Hermite splines interpolation angles between key points as a continuous 

quantity, the direction of robot rotation between key points is often not optimal because the 

180/-180 degree flipping point is not taken into account. To fix this, the angles of the key points 

are optimized sequentially by determining which direction requires the least amount of rotation 

to reach the next angle. If rotation in the positive direction is optimal, the angle of the next key 

point will increase from the current angle, and if negative rotation is optimal, the next angle will 

decrease. This ensures that the generated path equations will not cause the robot to rotate 

more than 180 degrees between key points.  

 void optimizeRotation() { 

    for (int i = 1; i < points.length; i++) { 

      var p1 = points[i - 1]; 

      points[i] = points[i].copyWith(theta: points[i].theta % (2 * pi)); 

      while (true) { 

        if (points[i].theta - p1.theta > pi) { 

          points[i] = points[i].copyWith(theta: points[i].theta - 2 * pi); 

        } else if (points[i].theta - p1.theta < -pi) { 

          points[i] = points[i].copyWith(theta: points[i].theta + 2 * pi); 

        } else { 

          break; 

        } 

      } 

    } 

  } 
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File Handling 

Paths are saved as JSON files in the format 

shown to the right:  

There are 3 components of a save file: 

meta-data, key points, and sampled points.  

The meta-data specifies the name of the path 

and the sample rate (in seconds) at which interpolated 

points are sampled at.  

The key points are only included to allow paths 

to be downloaded and reconstructed by the path tool.  

The sampled points are interpolated in a list for 

the robot code to follow (in this case, with a PID on 

the drivetrain).  

 Full autos are saved with their child paths all in 

one JSON file in the format shown below:
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There are three main parts to the autos: the metadata, schedule, and paths. The 

metadata is used to identify which auto is chosen. The schedule is used to communicate which 

paths need to be run and under which conditions. The paths to be run are given by the index; 

they are in the ‘paths’ array and have the same schema as path files. 

Robot-side Code 

Parsing the Autonomous JSON 

In an optimal codebase, all of the 

robot code should be configurable from the 

RobotContainer.java and Constants.java 

files. To accomplish this optimization, a 

series of files for parsing the autonomous 

files were written. The main file is a 

PolarAutoFollower.java, which can use the 

parsed JSON to recursively schedule 

PolarPathFollower commands. 

The PolarPathFollower.java file has 

two main sub-items: The AutoFollower and 

the list of commands. A recursive function 

was used to parse out all sub-commands: 

This function first checks which type 

of command it is by checking for each overarching command type.  

If the chosen command has a set of subcommands, the function will recursively call itself 

to schedule more commands. If the chosen command is not a set of subcommands, the 
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function will add the command by using the HashMap of commands set up in the 

RobotContainer.java file:

 

The command is then set to run with a start time and end time to ensure the command 

times out when needed. 

When scheduling a command, the PolarPathFollower also checks if the command is a 

subtype of AutoFollower. If it is a subtype of AutoFollower, then the PolarPathFollower, for the 

allotted time, lets the command take control of the drivetrain, replacing the job of the default 

until the command finishes. When the command finishes, the default follower is applied once 

again. This allows the use of different types of path followers, which are each optimized for 

different objectives.  

The default follower is optimized to follow the path with accurate velocities and 

command timings. The other followers implemented include: FullSendFollower, 

AutoPlaceFollower, and FeederPickupFollower. The FullSendFollower is optimized to maximize 

speed along a path, which can be useful when spanning large sections of the field. The 

AutoPlaceFollower and FeederPickupFollower commands are optimized for accuracy and end 

upon placement and coral intake, respectively.  
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Path Following Algorithms 

In previous years, time-based followers were used in which if the robot got behind in a 

path, it would try to cut corners to reach the path’s desired position at that time. To reduce this 

issue, a pure pursuit path following was implemented. Instead of choosing which point to run 

PID control to using time, this algorithm finds the next point in the path that has not been 

reached. This way, the path follower never has to cut a corner.  

The problem with choosing just the next point, though, is that with 1 centisecond of 

granularity and 2-3 centiseconds of schedular loop runtime, the autonomous will function at a 

rate 2-3 times slower than expected. To counteract this, the algorithm chooses a point that is 

farthest within a specified radius from the robot. This extra “look-ahead distance” allows the 

robot to run its PID control loops on regular distance setpoints, leading to a constant speed of 

the robot.  

Even this path-following system is not perfect, however, because if a change in robot 

speed is required in a path, this form of following cannot provide it. This makes it useful in the 

FullSendFollower because of the need to go at a consistently fast rate, no matter how many 

points are within the look-ahead radius. 

To allow variable speeds, the default follower scales the look-ahead distance dynamically 

by multiplying it by the desired velocity at that point. This allows the robot to slow down 

because as the look-ahead distance gets smaller, the robot moves slower. This also does not cut 

corners because it checks that it has crossed every point on the path. One issue with this 

algorithm is that if the velocity at a certain point within a path was set to 0, the look-ahead 

distance would also be 0, leading to the robot standing still and never moving. To stop this, the 

look-ahead distance was calculated by adding a small feed-forward look-ahead to the variable 

look-ahead. 
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Polar Forecast 

 Scouting is a small but crucial part of team 4499. It is the process of choosing alliance partners 

who synergize effectively. Although this task may sound easy, digging any deeper than the bare minimum 

is a complex act, which is why the Highlanders have implemented Polar Forecast this year. Polar Forecast 

is a web app that can display and collect scouting data. This data is sent to a backend, where complex 

analysis using machine learning is performed. 

 

Groups and Alliances 

Each account can create a group.  Users can only join a 

group associated with the same team number that the owner has.  

To create a group, click the profile icon and then click on groups. 

Once created, the join code will appear in the bottom right corner.  

On click, it will open up a QR code to join and automatically copy 

the join link to the clipboard. This link can be shared to add other 

users to the group. Once the user clicks on the link, the system 

will send a join request. Users can then click on the “Members” 

tab to see join requests and all members in the group, sorted by 

their permission level.  There can only be one owner in a group, 

but the owner has full control of everything in the group.  Admins can manage data (pit scouting, match 

scouting, pictures), join events, join alliances, kick, invite, or accept members. Members can submit data 

and view the analyzed data. 

Alliances 

At each event, groups can choose to collaborate their data with other teams using alliances.  

Groups can invite other groups at each event to join a scouting alliance. To create an alliance on the 

group page, users can go to the “events” tab.  Here, the group can be added to an event. Once the group 

joins an event, click the “Create an Alliance” button to start inviting other groups to join. Alliances can be 

40 



 

accepted in the same place where invitations are sent.  Once in an alliance, all data from these teams is 

visible to each other, but if a team decides to withdraw from the alliance, their data will be hidden once 

again. 
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Pit Scouting 

 To reduce communication errors and duplicate entries, a way to check this information 

beforehand is built into Polar Forecast. The status system is built so that whenever a team has been pit 

scouted, their pit scouting status goes from “Not Started” to “Done”. If the form was left incomplete, 

then it shows “Incomplete”. A similar thing is done with picture collection, and upon upload, the backend 

changes the picture status to “Done”. To access the input form for the data, click on its status. For 

example: to pit scout a team, click on their status in the “Pit Scouting” tab of the event page. 
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Auto Scouting 

When a user is trying to scout an auto, clicking on the team’s pit scouting area and then using 

the “Add Auto” button will open a card as shown below:  

 

Clicking on each different button will add a step to the list.  Steps can then be deleted or 

reordered by holding and dragging. This data will help plan autos with teams during a match and will 

help pick teams with compatible autos in a scouting meeting.  

43 



 

Match Scouting 

 

 

The match scouting form has the same form for autonomous as pit scouting, but with extra 

buttons to indicate if the team succeeds on the piece they are attempting.  For tele-op, the scouting is 

just a counter for each game element that is expected to be updated as elements are scored. It is 

important to note that climb data is not recorded, as perfect climb data can be calculated using data 

from The Blue Alliance. 
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Data Verification 

 To ensure that scouts are entering good data, simple checks are run on the metadata fields. The 

first check is making sure that the scout has inputted a name. The next check is to see if the given match 

number exists. The backend next checks if the given match has the given team number. If the scout 

passes these checks, then the system will submit the entry instantly. If the scout fails any of these 

checks, the scouting data form will display the error so that the scouts can fix it. The last implementation 

is making sure that a scout didn’t submit more than once. To stop this, the database checks if there is 

another entry with the same scout name, match number, and team number. If any entry matches, then 

the system will allow the scout the option to overwrite that entry. This set of checks minimizes the risk of 

duplicate, and incorrectly labeled data.  
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Data Display 

 When displaying information, it is all about making the information easy to access and view, but 

at the same time making it functional. The list of requirements for data displays is rigid, as they are the 

most vital part of the scouting app. 5 pages in the scouting app display data: Event, Team, Match, Pit 

Scouting, and Picture Scouting. 

 

Event Page 
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Rankings 

 When displaying rankings, only relevant information was kept on the event page. Each team’s 

rank, simulated ranking points, auto score, auto coral points, teleop coral points, net, processor, climb 

rate, OPR, and death rate are shown on this page. This data is organized into a table and can be easily 

sorted for quick analysis. To see more granular stats of a team, users can click on each team’s team 

number. 

Charts 

To display data more visually, a charts page was added. The match-by-match chart allows direct 

comparison between two different robots by clicking the “Select a Team” dropdown. The compare 

button on this chart allows users to directly compare two teams’ stats. This chart page contains column 

graphs that have detailed breakdowns of OPR and cycles. These sub-fields, such as autonomous scoring, 

can be assigned a weight to increase or decrease the value that a field has. This is so that teams can be 

ranked based on metrics other than just points. These charts are displayed in the “Charts” tab on the 

scouting website. 

Schedule 

The event page has two tabs for displaying schedules, “quals” and “eliminations”. These tabs 

contain a table that shows the results or predictions for the match. When a user clicks on a match, it 

takes them to the match page.  
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Stats 

 

The team page has a “Stats” tab in which all granular metrics are displayed. This has a simple list 

of each of the stats and attributes the team has. 
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Data Analysis 

 The data analysis used in Polar Forecast has two key areas: data simulation and algorithm 

creation.  

Data Simulation 

 Simulating a tournament can be useful when testing analysis algorithms. 3 main sources of data 

must be simulated to test analysis algorithms: true data, The Blue Alliance data, and scouting data. True 

data records exactly what happened in every match, including who, what, and where it was scored. The 

Blue Alliance (TBA) data is a simulation based on the true data, which does not say which team on each 

alliance scored. Scouting data is simulated to try and mimic the nature of fallible human scouts, 

recording most data, but with error added as well.  

True Data 

 To simulate true data, many factors must be randomized. The first step was to choose a schedule 

that would tell us how many teams would compete at the tournament and which matches they would be 

playing in. Instead of making a custom schedule, a pre-generated schedule created for cheesy-arena by 

FRC team 254 was used. Their work can be found here: 

https://github.com/Team254/cheesy-arena/tree/main/schedules.  

The next step in the process was to randomize the stats of the teams while still keeping things 

realistic. To do this, the team stats were randomized with archetypes. These archetypes of robots could 

score in different places and have different abilities. They each have a set of autonomous schedules that 

they could choose from to run, and had some baseline amount of scoring, with some amount of random 

increment or decrement to make it more random. These robot archetypes and their given 

randomizations create a realistic simulation for true data. The true data came in JSON format, following 

closely with The Blue Alliance’s format, but with additional fields recording which teams scored. 
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The Blue Alliance Data 

 The next step was to translate true data into the language of TBA. To do this, additional fields 

relating to which teams scored were removed. Errors were not simulated because this data is assumed 

to be perfect. 

Human-Input Scouting Data 

 The last step was to simulate the human-entered scouting data. This was crucial because it 

shows exactly which team scored, data that cannot be extracted from TBA. This would not be as simple 

as the blue alliance data, as there is a different format for this set of data, and scouts are human, and 

have errors.  

Scout archetypes were created to randomize this error. The 

simulation had a set number of scouts, each with an archetype that 

denoted the number of matches they would scout and the amount of 

error they would have when measuring each of the metrics. Each scout 

additionally had a probability of scouting each match to randomize 

which matches they decided to scout. This data was stored in JSON 

format. 
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Simulation Usage 

 By using this simulation, the algorithm could be run multiple times to test different aspects of an 

event. The most important metric from simulation is the error, which gives insight into how well each 

algorithm performs. It can be calculated by finding the difference between calculated averages and true 

averages. This is a graph showing the error of data (game pieces of error per field)  as the number of 

scout entries changes in a scouting data-only algorithm:

 

TBA-Only Regression 

At first, multivariate regression with TBA data was used to calculate the OPRs. In the regression, 

each team is a variable, whose value is 0 or 1 based on if the team is playing in the given match. Each of 

these variables has a coefficient which is exactly what is being calculated – the contribution of each 

team. If the team is not in the match, then their contribution will be 0 for that match, which follows the 

way it works in the robot game. According to simulation data, after using multivariate regression on TBA 

data, the estimate was off by a margin of about 3.0 game pieces per team (in all fields, so about 0.6 

pieces error per field).  
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Scouting and TBA Regression 

Next, scouting data was incorporated into the algorithms. This was done by setting the 

coefficient of the scouted team to 1 in the matrix and filling in the rest of the values from the scouting 

data. It may seem that this data would decrease the accuracy of the regression data. However, it turns 

out that even though the data was flawed, it helped guide the regression closer to the true data because 

as more entries are submitted, the mean tends towards the true data. This resulted in about 2.6 game 

pieces of error per team, reducing the error by about 15%. 

Machine-Learning based Regression 

 The next step towards great data was creating a machine learning algorithm to further improve 

the accuracy of the data. With pure regression, some teams had impossible contributions, such as 

negative or greater than the maximum number of game pieces. To solve this, a machine learning 

algorithm was created using a genetic algorithm. To simplify, it simulates evolution in a population using 

mutation, reproduction, and natural selection. In this case, “genes” are the team’s contribution, and the 

“organisms” are the arrays of data holding each of the individual contributions. The way this “Genetic 

Algorithm” works is complex, but it can be broken into 3 parts: mutation, reproduction, and natural 

selection. 

Mutation 

 The mutation algorithm works by picking random genes, and giving them a random value using a 

normal distribution. The two factors in mutation are the mutation rate, or how often a mutation occurs 

in a gene, and the mutation distance, which is how large each mutation is. 

Reproduction 

 The reproduction algorithm takes an input of two “parent organisms” to generate “offspring”. 

The algorithm randomly chooses some genes from one parent, and then some from the other parent. 

The offspring then goes under mutation to introduce new genes to the population.  
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Natural Selection 

 Although these two forces will tend toward better data, natural selection must be used to 

remove bad genes from the population. The algorithm needs to be able to rank these organisms based 

on their fitness and choose only the best of the population to use for reproduction to create the next 

population. This means that a singular metric to rank the fitness of these organisms is required.  

This calls for an error function, which returns an error value for each organism. The error is 

calculated by finding the difference between the actual outcomes of the matches and the outcomes 

predicted by the organism. If a genetic algorithm with only this in the error function was run, then the 

values would end up the same as in the multivariate regression. To make the calculations more accurate, 

other custom algorithms must be added to the error function. In Polar Forecast, the error was artificially 

increased if the value was outside of the possible boundaries, such as if a team was scoring 19 net algae 

(max of 18) or -1 net algae (min of 0). This error custom error function better tunes the algorithm to 

create more realistic values than with pure regression. 

 Shifting gears back to natural selection, after ranking the population by their error, the best 

individuals in the population are chosen to become parents. The organisms that don’t make it to become 

parents are removed from the population. Each of these parents has an offspring with every other 

parent, to create a new population. Before adding each offspring into the population, their genes are 

mutated to introduce new genes to the population. This is because, in evolution, fitness can be thought 

of as a set of mountains and valleys. Evolution always wants to go upward, but will never go down a 

slope to try and get on a taller mountain. This is why mutation is used to try and jump across valleys by 

introducing genes that could be part of a taller mountain. This is a dangerous game, however, because 

mutated genes could also decrease the accuracy of the data, so to make sure the population is always 

improving, the parents are kept as part of the next population. This is called “Elitism” as it keeps the elite 

genes as part of the population.  

 Populations are created until either no improvement is observed or a “generation timeout” is 

met. Once the algorithm ends, the singular best organism, out of its thousands of ancestors, becomes 

the output shown on Polar Forecast. 
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Algorithm Optimization 

 When optimizing a genetic algorithm, there are multiple factors that can be optimized:  the 

number of parents, the maximum number of generations, the number of generations since 

improvement, the gene mutation rate, and the gene mutation distance.  

Before optimizing the algorithm, the algorithm already had a low error of 2.1 game pieces but 

had a slight problem with time efficiency. This algorithm took 2 minutes and 10 seconds on average to 

run. After optimization, incredible results were achieved: an average error hovering around 1.6 game 

pieces, and a runtime of 6 seconds. In total, error was reduced by almost 50% by using scouting data and 

machine learning. 

 

Updating to 2025 

 Updating the algorithms for 2025 was simple because the algorithms were accurate, only the 

inputs and outputs were changed. There were three types of inputs that needed to change: the data that 

can be directly extracted from TBA, the data that can be directly extracted from scouting data, and the 

data that requires both TBA and scouting data. This year, net scores for each alliance were adjusted for 

the processor scores made by the opponent alliance. 

 

Predictions and Simulations 

 To get a better idea of which teams will end up at the top of the leaderboard, the algorithm 

simulates the remaining matches and compiles a simulated ranking based on the simulated ranking 

points (RPs) earned by each team. This is helpful because in most tournaments, the night before alliance 

selection is not the end of quals, but is the time when teams like to create picklists.  

 

Backend and Database 

 To keep the database private, the app has a backend as a messenger between the database and 

the front end. This is also where analysis is periodically run. 
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Periodic Data Updates 

 To minimize overloading of the lightweight backend, the algorithm is set up to not run 

constantly. Every 20 minutes, the app runs the analysis algorithm. This alone is not enough to reduce the 

continual stress of analyzing every tournament in the world, as well as analyzing separate data for each 

group. 

 Another strategy used is tracking updates. The TBA API makes this simple because it has an ETag 

system that tracks changes for us. If there are no updates, the API will send a 304 error. The other set of 

updates checking needed is scouting data. To keep track of updates in the scouting data, it stores an 

“up_to_date” field. Whenever the backend receives scouting data, it changes the value of this field from 

true to false. Whenever the system updates, the value is set to true. This way, the algorithm can check 

for updates, and won’t run analysis on up-to-date data. 

 

REST API Endpoints 

 The entire scouting app is based on these API calls. The backend will send information as JSON to 

the front end, from where the front end can display the data. The front end also sends back data as JSON 

to be stored in the MongoDB database. This results in a mesh of GET, POST, PUT, and DELETE endpoints. 

The backend is built in Python using FastAPI. 

55 



 

 

 

Database 

 MongoDB is used to store the data. This is extremely easy because it 

accepts documents of JSON type. This is important because all of the data used in 

the algorithm is in JSON format. On top of MongoDB, to reduce cloud costs, images 

are stored in an Azure blob storage, which can inexpensively store large files. 

 

Login system 

 Keycloak was used to manage the login system. This is because it has easy user and group 

management utilities, which allow the backend to easily analyze data. Keycloak is attached to a Postgres 

database to ensure that all of the auth information persists across deployment cycles.  

56 


	THE HIGHLANDERS  
	#4499 
	2025 
	TECHNICAL BINDER 
	TABLE OF CONTENTS 
	ROBOT DESIGN 
	DRIVE TRAIN 
	BUMPERS 
	ELEVATOR 
	PIVOT/CARRIAGE 
	TWIST 
	INTAKE 
	CLIMBER 
	MACHINING  
	Pillow Block 
	Custom Steel Hub Interface 
	Constant Force Spring Holder 
	Pulley Holder 


	ELECTRICAL 
	ELEVATOR 
	ORANGE PI 
	CANCODER 
	BATTERY 
	LED LIGHTS 

	PROGRAMMING 
	STRATEGY 
	CONTROLS 
	AUTONOMOUS PROCEDURES 
	LOCALIZATION 
	State-Machining 
	 
	Auto Placement 
	Pathing Tool 
	Design Requirements 
	Labelled diagrams and Descriptions 
	Path display 

	 
	Key point menu 
	Commands menu 
	Paths menu 

	How to use 
	Robot and Field configuration 
	Creating Paths 
	Creating Paths 

	Editing Way-points 
	Make sure it looks right 
	 

	Upload to RoboRIO 
	Code structure 
	Path-generation 
	Quintic Hermit Splines 
	Velocity and Acceleration Equations 
	Code Implementation 

	Optimization 
	Angle Optimization 

	File Handling 

	Robot-side Code 
	Parsing the Autonomous JSON 
	Path Following Algorithms 


	Polar Forecast 
	 
	Groups and Alliances 
	Alliances 

	Pit Scouting 
	Auto Scouting 
	Match Scouting 
	Data Verification 

	Data Display 
	Event Page 
	Rankings 
	Charts 
	Schedule 

	Stats 
	 

	Data Analysis 
	Data Simulation 
	True Data 
	The Blue Alliance Data 
	Human-Input Scouting Data 
	 
	Simulation Usage 
	TBA-Only Regression 
	Scouting and TBA Regression 
	Machine-Learning based Regression 
	Mutation 
	Reproduction 
	Natural Selection 
	Algorithm Optimization 

	 
	Updating to 2025 
	 
	Predictions and Simulations 

	Backend and Database 
	Periodic Data Updates 
	REST API Endpoints 
	Database 
	Login system 




